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Designing Application Software
in

Wide Area Network Settings *

Mesaac Makpangou Ken Birman t

October 17, 1990

Abstract

Progress in methodologies for developing robust local area network software has not been
matched by similar results for wide-area settings. In this paper, we consider the design of
application software spanning multiple local area environments. For important classes of appli-
cations, simple design techniques are presented that yield fault-tolerant wide area programs. An
implementation of these techniques as a set of tools for use within the Isis system is described.

Keywords and phrases: Process-groups, ISIS, fault-tolerance, wide-area protocols, net-
work partitions.

1 Introduction

There is growing recognition of the utility of the process-group paradigm in distributed computing.
In this approach, distributed software is structured into groups of processes that cooperate to
implement distributed services, share replicated data, monitor one another, and so forth. The
communication facilities for such systems typically extend conventional IPC and RPC to include
group multicast protocols.

Many systems have implemented group facilities (process groups in the V system [5] and ISIS
[2], port groups in Chorus [11], etc). Likewise, a variety of group multicast protocols have been im-
plemented (atomic multicast, causal multicast, reliable multicast, multiRPC, etc). Unfortunately,
although it is widely accepted that local area networks (LAN) and wide area networks (VAN)
have different characteristics, most work on process groups and group communication has been
restricted to LAN environments. For example, most such systems assume low communication la-
tency, high bandwidth, and that although individual messages may be lost, network partitions do
not occur. These assumptions hold in a LAN environment but are not typical of the WAN envi-
ronment. Consequently, mechanisms and multicast protocols that give acceptable performance in
a LAN environment, might perform poorly (or incorrectly) in a WAN environment.

This paper examines wide area applications constructed by interconnecting process groups lo-
cated in different LAN systems. Such applications may present an integrated interface abstraction,
but will typically operate by binding the user to a local representative of the WAN service, which

*This research was funded in part under DARPA/NASA subcontract NAG-2-593, and in part under DARPA
contract MDA-972-88-C-0024.



responds to requ-sts using local data whenever possible. Our goal is to identify and implem,.lit
a suitable collection of WAN tools to assist in this process. These consist of mechanisms anl
protocols that assume that applications will be long-running and will experience such problems as
partitions, network crashes, and long haul connection failures.

Because few VAN applications have been developed, we lack a good model for applications (,f
this sort. To overcome this, we begin by examining problems that arise in a VAN application for
capture and analysis of seismic signals. We then turn to the problem of implementing the facilitis
needed to solve this problem. Finally we discuss a general framework for the support of wide area
applications, presenting this in the context of the Isis environment.

The rest of this paper is organized as follows. Section 2 discusses our assumptions about the
computing environment. Section 3 discusses the applications we have selected and examines their
support requirements. Sections 4, 5 and 6 discuss the mechanisms and long haul protocols that
emerge from these case studies and provide performances figures for our initial implementation.

2 Background and assumptions

2.1 The wide area system model

Figure 1 illustrates the overall architecture of a wide area environment. The system is composed of
a set of local area networks, interconnected by point-to-point long haul links that comprise the wide
area network. The term cluster denotes the set of sites belonging to a single local area network.
More than one link may connect two clusters.

Computing within a cluster takes place in processes that communicate via messages. A process
group is a set of processes that are cooperating for some purpose. Our work was done in the
context of Isis, a system that provides extensive support for process groups and reliable group
communication. Isis process groups do not span multiple clusters.

We say that process groups located in different clusters are related if they communicate with one

another. A partitioned wide area application is one composed of related groups. Figure 1 depicts a
situation where we have two partitioned wide area applications represented on each cluster by the
process group named respectively G1 and G2.

A local multicast protocol designates a protocol used to multicast a message to the members
of some process group. A long haud multicast protocol designates a protocol used to multicast a
message to the members of a set of related groups.

2.1.1 Failure assumptions

We assume that each LAN system "isolates" the effect of a host crash, local connection failure, and
LAN partition. This means that only application components located within the affected cluster are
involved in the detection and handling of these events. These assumptions hold for our Isis-based
implementation, but might limit the applicability of our work to other LAN-based systems.

With regard to wide-area communication, we assume that long haul connection failures, cluster
crash, and WAN partition can all occur. Because clusters may be redundantly connected we will
say that a long haul connection failure occurs when a link connecting two dusters fail, and that a
WAN partition occurs when all such links fail. It will be useful to distinguish two subcases of WAN
partitioning:
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Controlled WAN partitioning

WAN communication lines may be costly or subject to physical constraints that cannot always
be satisfied (i.e., a satelite link will need a line-of-site path to a satelite). For these reasons.
many applications use a periodic communication model. As needed (or whenever possible).
clusters open communication links. Data is shipped across the links, which are then closed.
We will refer to this kind of partitioning as controlled partitioning.

Unplanned partitions

A WAN partition is unplanned if it results from an unpredictable event such as the failure
of the only communication line linking two clusters or the failure of a machine managing an
endpoint of such a line. Such a partition is undistinguishable from the simultaneous failure of
all the machines in one of the clusters. Our work assumes that no failure lasts indefinitely and
hence that communication will eventually be reestablished. Accordingly, we focus on wide
area applications explicitly designed to tolerate the delay introduced by unplanned partitions.

The following additional terminology is used throughout the rest of this paper. A partition is a
WAN partition. An application is a wide-area application, formed of a set of related groups running
in separate partitions. And, a connection is a single long haul communication channel.

2.1.2 An impossibility result

There exists a substantial body of work on protocols for environments subject to unplanned parti-
tions. The work most relevant to systems like Isis is by Skeen, who proves that protocols having
the characteristics of a two- or three-phase commit cannot be terminated safely in the presense
of possible partitioning failures [10,61.1 The LAN implementation of Isis uses multi-phase com-
mit protocols at its lowest levels, to maintain information about the status (operational/failed) of
process-group members. This information drives the higher levels of the system.

An implication is that little of the software commonly used by Isis in LAN settings can be
modified to work correctly in a WAN environment. In particular, the form of consistency that Isis
supports cannot be made tolerant of network partitions without risk of "blocking" when partitions
occur. The current version of Isis finesses this issue by shutting down the sites in a "minority"
(smaller) partition. Were Isis to be used in a WAN setting, one would sacrifice either consistency
(correct, predictable behavior) or availability.

Notice that although Skeen's results preclude any transparent scaling of the existing Isis systems
- or any similar system - into a WAN environment, it is possible to make LAN systems highly
resilient to failure, and the existing Isis toolkit is quite effective at using state replication for this
purpose. This justifies our assumption that LAN services will be highly available (recovering rapidly
from crashes) and will not lose "committed" state - the property we referred to as failure isolation,
above.

'Readers familiar with the database literature will be aware of several approaches that yield transactional serial-
izability in the presense of partition failures. Unfortunately, these protocols cannot be extended into protocols for
consistent group management and atomic communication, which are the cornerstones of the approach.
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2.1.3 Long-haul channels

We initially assume that inter-cluster communication is by a communication-failure free fifo channcl.
Such a channel has the following properties:

" All messages sent from one cluster to another are received in the order sent.

* Inter-cluster communication is not subject to message duplication or packet loss, even in
presence of connection failures.

These characteristics are stronger than what a general purpose transport protocol like TCP or
any of the five ISO transport classes provides, because we require these properties even when
multiple physical communication links exist between a pair of clusters and even when links fail or
are restarted during the course of execution. In Sec. 5 the implementation of a communication
channel with these properties is shown to be feasible using existing Isis facilities.

2.2 Impact of WAN characteristics on protocol design

For purposes of protocol design, a wide area network (e.g. ARPANET) differs from a local area
network (e.g. ETHERNET) primarily in four respects: higher latency, lower bandwidth, point
to point connectio,.s, and a higher probability of partition. These differences, together with the
assumption that the application components located in different LAN systems are loosely coupled
(that is, they interact relatively infrequently and most interaction is asynchronous), have a sub-
stantial impact on the implementation of long protocols, particularly those involving more than a
pair of participants (such as multi-phase commit or reliable multicast):

1. Network partition must receive more attention.

In a LAN environment, the low probability of partition makes it feasible to either ignore
these events, or to implement a harsh solution such as the Isis approach cited above. Such a
treatment can be justified, at least in moderately small LAN systems, because partitions will
be so infrequent and because when LAN failures actually occur, they provoke large numbers
of machine failures by separating application programs from resources on which they depend.
If large numbers of machines are crippled by a partition failure, simply assuming that these
machines have actually failed may not be unreasonable. Isis users have reported little trouble
with this restriction.

In a WAN environment, partition will often be the usual state, with dusters contacting each
other periodically so as to minimize the cost of maintaining open connections for long periods
of time and to maximize the use of connections when they are opened. Moreover, because
applications will be loosely coupled, a WAN partition will generally not trigger large numbers
of machine failures. These considerations make it important to limit the impact of a partition
and to provide mechanisms by which applications can offer some restricted (or autonomous)
level of service in partitioned settings.

2. Multicasting only when it is really necessary.

Systems like Isis often structure applications and services using a collection of small process
groups with perhaps 3 or 4 members each. A request on such a group may be implemented

5



as an IPC or RPC to a favored member, or as a multicast 2 to the full set. In this case. either
all members perform the request in parallel, or one member performs the request while the
others back it up for fault-tolerance. The primary/backup approach is encouraged in IsIs
because different group members can respond as the primary server for different requests.
providing a form of load sharing. This approach is inexpensive because it benefits from the
comparatively high speed of communication and because the backup processes for one request
will be working actively on other requests. Moreover, the multicast itself may make use of
special LAN hardware facilities.

In a WAN environment, casual use of a "large-scale multicast" could lead to poor performance
due to the long latency of WAN communication, lower WAN bandwidths, and possible re-
strictions on establishing and using WAN communication links. Consequently, the Isis style
of programming will not map transparently to WAN applications. Instead, such applications
will normally communicate with the WAN application through the group representing that
application on the local cluster. As much as possible, this group will respond to requests using
local information. If information from a remote server is needed, it will most often request
it using some form of point-to-point long haul communication. On the other hand, a WAN
multicast might remain useful for asynchronous purposes, such as the diffusion of information
to the groups in a partitioned wide-area application.

3 Case studies

This section discusses a series of problems motivated by a set of wide-area seismic monitoring appli-
cations coUcctively cpllr 'he Nuclear MInitoring P!?-ea-ch and Development System, or NMRD.
being developed by Science Applications International Corporation under contract to DARPA. 3
NMRD includes several knowledge-based applications which collect, analyze and archive seismic
data from a geographically dispersed network of seismic sensors, and a rich set of tools for select-
ing and analyzing data in the archive to address seismological issues. The system is extensively
automated with rule-based Al techniques.

The largest and most complex element of NMRD is the Intelligent Monitoring System or NI S
which detects, locates, and identifies seismic events using data from a network of stations in Eurasia.
IMS is structured as a collection of LAN clusters, initially placed in Washington, Norway, and San
Diego. As the system is developed, there are potential requirements for expansion to include several
more LAN dusters.

Our group became involved in developing LAN and WAN software for NMRD and IMS in
1989. The LAN aspects of NMRD are concerned with system fault-tolerance and configuration
management, communication, LAN resource scheduling, and related issues. All of these aspects
are beyond the scope of the present paper. Below, we focus on WAN use of Isis in the current IMS
prototype.

Currently, IMS is structured like a wheel, with a central "hub" in Washington, DC, that
performs most of the automated data interpretation functions. A set of "spokes" connect this hub
to free-standing LANs which acquire the data and do extensive signal processing to select and

2 We are using multicast in the sense of a software protocol for communicating with the full membership of a

dynamically changing group - not in reference to a hardware feature.
3DARPA Contract No. MDA972-88-C-0024
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characterize d(are segments which may have signals of inte-rest. The central interpretation done
at the -'hub" plays a crucial role in this selection. The spokes comprise the WAN *ommunication
network, and consist of long-distance TCP channels. Most of the WAN comani.',ation consists
of automatically initiated data selection and transfer operations, with the hub software issuing
requests to the remote subsystems. Because the system is automated, the fault-tolerance of these
operations is critical to correct function.

In the future, IMS and other NMRD subsystems may grow to include multiple hubs, supporting
seismic researchers as well as automated analysis, and this will make it important to support
a number of of additional WAN services. The discussion that follows examines some of those
hypothetical issues after briefly commenting on the file transfer problem.

3.1 File transfer and remote notification

The most common of the WAN applications arising in IMS concern inter-LAN event notification
and file transfer. The initial signal processing is done close to the data acquisition systems to avoid
the requirement that all data be transferred to the hub. All acquired data are processed to detect
signals and characterize them in terms of a standard set of parameters which are archived in a
local commercial relational database management system (RDBMS). On a regular schedule (e.g.,
every 15 minutes), the hub initiates a request to transfer data from the remote RDBMS to the
central RDBMS at the hub. The automated knowledge-based system (KBS) at the hub analyzes
the data from all stations to locate and identify all detected events. Depending on the location and
character of the events formed by the KBS, a request is formed for relevant segments of the raw
data.

The sequence of steps involved in such a raw data transfer is as follows. First, the ISIS long-haul
utility is invoked by an IMS program running on the hub with a message describing the data to be
retrieved (station and time interval). The remote portion of IMS receives this message, retrieves
the requested data and initiates the file transfer to the hub. When the file transfer takes place, a
suitable spooling area is found for the incoming data and notifies the hub process that initiated
the retrieval. Finally, after the transfer has completed successfully, the remote file is deleted. This
procedure is generalized by replication for addiLional remote sites. Fault-tolerance is key here:
errors such as failure to transfer files, lost or duplicate notification messages, and so forth cause
problems requiring later human intervention. 4

3.2 Resource location

Resource location is the problem of mapping resource names into information about the location
and contents of the named data objects. This is the problem solved by so-called "white pages"
services, and represents an active research topic. Because the current IMS system is centralized,
the problem does not yet arise. However, WAN solutions to the resource naming problem would
become important if the system expands to include multiple hubs.

Imagine an IMS-like system running with many integrated computational hubs. Each of these
hubs would have the ability to request information (new-data) from outer clusters (data that was not
provided as part of routine processing). Obtaining and analyzing newdata may involve expensive

4IMS almost never "crashes" due to software failures - the system tries to handle errors gracefully. "!owever,
errors may cause the system to lose things - events, data for the analyst to review, etc. In cases where the lost data
may be important, a fairly tedious manual corrective action will eventually be needed.

7



: terms of resources) data retrieval and processing operations. For example, it might require Qa.,r
a complex data adaptive beamforming operation be performed: such computations may reqilir"
hours of CPU time. Clearly, one would not want to perform this sort of operation on hub A lwhi,
hub B has already performed one. It follows that when a new-data request is made. a service will
be needed to determine if the computation has already been performed (or is underway). and if ,.
whether it would be cheaper to transfer the computational results or to transfer the raw data auI,
repeat the analysis locally.

It is natural to think of such a version of IMS as generating and manipulating a large event -filo
or database. This file would identify both raw events and the location (and size, and computationail
cost) of the corresponding processed data file, or the location of any hub currently engagaed in such

a computation. The problem can thus be reduced to one of locating resources in a WAN.
A number of difficult problems now arise. First, observe that the naming space is a dynamically

changing one with several natural forms of hierarchy: physical hierarchy in space (i.e., the set of
events known only within some local cluster), logical hierarchy (i.e., the set of raw-data objects

associated with some new-data event), and global hierarchy (i.e., a set events currently under
consideration as evidence that a nuclear test has been detected). Operations on the naming space
will be search requests, read requests, and update requests. For simplicity of design, one would
want this namespace to present a seamless global abstraction. At the same time, information
should be maintained close to where it will be generated or manipulated, to avoid excess WAN
communication.

Consistency or coherency of such a VAN naming structure will correspond to the property that

any update eventually reaches all clusters with a copy of an event descriptor, that read operations
preserve the abstraction of a single global namespace, and in particular, that updates appear to be
serialized. To see this, consider a computation that reads a descriptor (say, a correlation descriptor).
The computation should subsequently see "current" copies of any other event descriptors on which
this descriptor depends; otherwise, it would appear that the namespace has somehow become

corrupted. Such a relationship is causal, and we will have more to say about mechanisms for
enforcing causal orderings shortly.

For brevity, we will not develop a complete solution to this problem here. We observe, however.
that the core mechanisms needed here will be ways to form WAN groups and to multicast updates
to the group members. Given such tools, the resource management service would be structured
into a collection of information domains within which updates would be multicast to all members.

To ensure that the namespace presents a causally consistent abstraction, we will need to know
that any multicast sent to such a WAN group (eventually) reaches all its members, and that if an
update is dependent upon some prior update, then all WAN group members see the two updates
in the order they were issued. Notice also that once a WAN group is formed in this application.
its membership remains fairly stable. Only the creation of new hubs or thew addition of new

sensor dusters would require changes in this part of the system configuration. Both operations will
obviously be infrequent. The physical scale of WAN systems suggests that this form of stability
should be fairly common. On the other hand, within such a WAN mulitcast group, one can easily
imagine needing to send messages to a subset of the total membership.

i / m mlm~8



3.3 Resource scheduling

Tho above exampls show how IMS uses WAN file tranif,-r and WAN multicast. Tio also hint at
the need to support WAN resource allocation and scheduling policies in an extended system.

Notice that the existing IMS permits an analysis program or researcher working in Washington
to initiate data retrieval requests and computation in Norway. This is not a major issue if ther,,
is only one hub. However, with muitiple analysis hubs. it would become important to partition
computational cycles among the various hub systems contending for database access and signal
processing facilities. Otherwise, it would be easy for an IMS component at one location to overloadI
a cluster located halfway around the world, preventing it from accomplishing locally critical tasks
sash as data compression and event detection, or even denying local analysis systems a fair share
of the computational resources.

We can abstract this problem as one of selling tickets for a periodic event. Only a process
holding the appropriate tickets will be granted access to the processor pool on a given LAN. An
-'event" in this formulation might correspond to one specific hour of activity on the Norway cluster,
and a ticket to a permission to perform five minutes computation during that hour. The ticket
sales problem has substantially more structure than the basic file transfer and remote notification
problems seen in our first example.

A solution to this problem should address two goals. The first arises from the need to design a
loosely coupled scheduling service. It should be possible to sell tickets for a future event on a remote
cluster even if communication with that cluster is presently impossible, if a connection fails during
the interaction, or even if a partitioning or cluster failure occurs. A second goal is that the system
should satisfy the maximum number of demands possible (presumably using an application-specific
cost function) while also guaranteeing fairness (also an application-specific notion).

Let us ask what can be said about this problem without speculating on the application-specific
aspects. Clearly, if the distribution of tickets is static and fixed, a cluster that receives a large
number of demands may not be able to satisfy all of them, while some other cluster may fail to sell
some of the tickets it holds. This will compromise the second goal, and suggests that the distribution
algorithm will either need a central decision making mechanism or a way to dynamically repartition
the collection of tickets. A centralized policy would violate our first goal. Thus, we need a dynamic
distributed allocation policy. Such an approach might pre-allocate tickets to clusters, but include
a mechanism for reallocating unsold tickets as the "event period" approaches. Ideally, we would
want this mechanism to make progress even if a communication failure or partition occurs.

3.3.1 Structure of the application

Assume that we have N dusters and that a group of ticket vending processes are active in each
cluster. We will partition the pool of tickets in N subsets and pre-allocate each to a specific cluster.
Each vending group uses its partition to serve demands from its local workers. Next, we divide the
selling period in subperiods. At the end of each subperiod, each server multicasts a state message to
its peers. This message reflects recent sales as well as the anticipated needs of the sender. Finally,
on the basis of the state messages it receives, each server computes a new partitioning of unsold
tickets using some deterministic, well known algorithm.

9



3.3.2 Classes of ticket repartitioning algorithms

Repartitioning algorithms can be characterized by their sensitivity to the deliver- order of stat,
messages, and by the degree to which tctions by servers in different partitions are synchronized.
We distinguish three classes of such algorithms:

1. Class 1 consists of algorithms that operate asynchronously and are insensitive to the order
in which s-at- messages are received from different servers. These are all fixed, well known.

and deterministic repartitioning algorithms. For example, suppose that we have five servers.
An algorithm in class 1 might assign 1/5 of each lot of unsold tickets carried by each state

message to each server. Notice that even if different servers see state messages in different
orders, the number of tickets available to a given server in a given round will be the same.

Class I algorithms are simple and stateless: they require only that the system provide eventual
delivery of each state message its destinations, and that the set of participants be fixed before
execution starts. We refer to WAN multicasts satisfying this eventual delivery property as
fault-tolerant WAN multicasts.

2. Class 2 algorithms operate by having each server wait for all the round-k state messages before
carrying out the repartitioning for round k+1. Such an algorithm has more flexibility than
the class 1 algorithms because it operates with full knowledge of ticket s,'-s, availability of

unsold tickets, and anticipated demand. Again, the algorithm must be detc--ninistic and well

known, so that all servers can execute it in parallel. Class 2 algorithms are thus insensitive
to the order in which messages are received but synchronous. Like their counterparts in class
1, these algorithms require that the system provide information about the set of participants

and support for fault-tolerant multicasts.

3. Class 3 algorithms are sensitive to the delivery order of state messages and asynchronous. For
example, consider a system in which a server needing tickets broadcasts its need, and servers
with a surplus broadcast the existence of the surplus. One might imagine a rule under which

all servers, in parallel, reallocate tickets as each such message is received. Such a scheme has
the advantage of making progress as rapidly as possible, as in the class 1 algorithms, but
without requiring the rigid determinism of the class 1 algorithms.

However, the order in which messages containing ticket requests are received may affect the
way that tickets are repartitioned in this case. In general, servers implementing class 3

algorithms may need to see all state messages in the same order, or at least in a predictable
order. We will refer to such multicasts as ordered WAN multicasts.

3.3.3 General remarks

1. Class 1 algorithms will perform poorly if demands are not uniformly distributed within the
WAN system as a whole. Typically, for these algorithms to maximize the number of requests
satisfied, the selling period will need to be divided in small subperiods. Such division will

increase the wide-area network traffic making the application components more tightly coupled.

2. Class 2 algorithms might reduce availability at certain locations. Suppose that some server

has no more tickets to sell. Even if it has already received a state message indicating that

unsold tickets exist on some other server, and even if the repartitioning algorithm is such that

10



it will be allocated some of these at the repartition time, it has to wait until it receives all
state messages before granting any further requests.

3. Because class 3 algorithms allow servers to operate asynchronously, these are more Likely to
yield a loosely coupled solution. However, class 3 algorithms need a multicast primitive with
known delivery ordering properties, and this may be a more costly primitive than the ono
used in a class 1 asynchronous algorithm. We return to this issue below.

4. Communication failures will affect all these algorithms by delaying the delivering of state
messages.

" For class I algorithms, delays impact ticket availability at certain locations. For example.
suppose the two subsets of servers {A, B} and {C, D, E} are isolated from one another.
Naturally, messages about unsold tickets released by each subset will not reach the other
during the partition. Therefore any tickets released by A or B that the algorithm will
assign to C, D or E will remain unused during the partition.

" For class 2 algorithms, the delay might completely inhibit ticket repartitioning for the
duration of the partition.

" Finally, for class 3 algorithms, delays impact the availability of unsold tickets in certain
partitions. Moreover, communication partitions might prevent the algorithm implement-
ing atomic WAN multicast from making progress in certain partitions. For example, if
WAN multicast is done using a multi-phase protocol, a partition during the first round
could completely inhibit the delivery of WAN messages for the duration of the partition.
This suggests that one-phase protocols are strongly preferable to multi-phase protocols
in WAN settings.

3.4 Summary of WAN communication requirements

The examples discussed above seem representative of a reasonably large class of wide area ap-
plications. In this section, we summarize the essential WAN communication requirements that
emerge.

An abstraction super-imposed upon the concept of group

WAN applications will typically need communication between a set of related groups located
in different dusters. This wide area set of groups (wSet) constitutes a new WAN abstraction
super-imposed upon the existing Isis LAN process group mechanisms. In such a set, each
element is a group and there is at most one element on each duster. It must be possible to
transmit messages to individual members of this set of groups as well as to the set as a whole.
Unlike groups in LAN settings, it seems reasonable to assume that wSets change infrequently
after creation.

Fault-tolerant multicasts

Certain applications need a multicast protocol tolerant of failures. Such a protocol will
eventually deliver messages to all its destinations even in presence of partitions, network
crashes or connection failures. If a server issues a fault-tolerant multicast and then fails,
and the system has "accepted" the message in a sense discussed below, this fault-tolerant

11



multicast must be delivered sooner or later to all its destinations. Conversely. when a servr
recovers from a crash, it should be able to recover pending fault-tolerant uiulicasts destino,l
to it.

Atomic and causal ordering

The name-server and class-3 scheduling problems point to application-level dependencies on
the order in which related groups receive WAN multicasts. Our group has explored this issue

in some depth in LAN settings, and we will not repeat this material here. To summarize.

there are two forms of multicast delivery ordering of possible interest in applications with a

group structure. One provides that all group members see the same messages in the same
order. This has been called an atomic order in the literature. The second is a generalization

of a fifo ordering, and consists of a multicast primitive that delivers messages in the order

they were sent, which Lamport has termed the happens before or potential causality ordering.

That is, say that mi and m 2 are multicast messages and let mi -< m 2 denote that mi was sent
before m 2 (i.e. that there exists a path of messages and local actions linking the sending of

mi to the sending of M2 ). Lamport refers to -< as the "happens before" relation [71, because

if mI -< iM2 , m2 may somehow depend upon mi. mi and m 2 are concurrent (were send -in
parallel" by independent senders) if neither mi -< m 2 nor m 2 -< mi. A multicast is said to

be causally ordered if whenever mi -< M 2 , it delivers mi before m 2 at any destinations they

have in common. A multicast is said to be atomically ordered if mi and m 2 are delivered in

a fixed order at all common destinations, even if they were concurrent.

The basic practical difference between a causal and an atomic multicast is performance.

Causal multicast can be implemented as a one-phase protocol that delivers most messages

promptly upon reception. Atomic multicast is more ordered, and this forces such protocols
to delay some messages in situations where a. causal multicast would not. In fact, there

are no one-phase multicast protocols for asynchronous systems. Isis implements its atomic

multicast protocol using two phases of causal multicasts; messages are delivered during the

second phase. The resulting protocol is about one-half to one-third the speed of the causal

one.

In [9], Frank Schmuck has demonstrated that most software designed to run over an atomic

multicast protocol can be modified to run over a causal multicast. In a long-haul setting,

this has an obvious benefit, since a protocol that runs in more phases will not only be slower,

but will also have much higher risk of being delayed due to a partition. In our work, we will

assume that most class 3 algorithms are built using a causal multicast; the remainder would

run over a 2-phase atomic multicast that is itself built using a causal multicast.

Readers knowledgeable about Isis will recognize that these needs are similar to the ones ad-

dressed by the Isis system in LAN settings. However, three points distinguish our wide area system

from systems like Isis. The first concerns the type of asynchronous computation that arises in WAN

settings and WAN applications. In Isis, asynchronous computation is common, but it is normal

to assume that asynchronous operations have low latency. In the WAN setting, latencies could be

very large. The second is that most long haul applications will be loosely coupled. In a LAN, Isis

assumes that typical applications are object-oriented and hence consist of multiple, closely related

process groups. In a WAN, it would be rare for a single application to make use of multiple wide-

area groups. Consequently, messages exchanged exclusively between the servers associated with
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one WAN service are not likely to be related to those exchanged between servers of some other
AN service. Firally, WAN services will probably not change membership vc'rv often. In fact.

most applications that we have considered are represented on every LAN cluster in the wide-area
system.

4 Wide area sets and Long haul multicast protocols

The wide area system is structured in three layers (see figure 2). From the bottom to the top
we have the transport layer, the interconnection layer, and the application manager layer. The
transport layer implements a reliable end-to-end transport protocol. In our current system, this
layer consists of a TCP channel. The interconnection layer implements communication-failure free
fifo channels between pairs of clusters. The application manager layer manages the wSets, and the
long haul multicast protocols. In this section, we focus on the application manager layer. Section
4.1 presents the wSet support. Section 4.2 formally defines the two long haul protocols emerging
from our case studies.

4.1 Wide area sets

4.1.1 Spooling facility

Our case studies emphasize the importance of asynchronous communication in WAN settings. A
basic characteristic of such communication is that processes may transmit messages without waiting
until they have been delivered. This creates a buffering obligation if a long delay may occur before
a message can actually be sent to its destination.

Accordingly, a reliable spooling facility is used as a core component of our system. Each spool
is a reliable service restricted to within a single LAN, and built using the basic Isis toolkit. Spools
provide a persistent buffering mechanism. When we say that a message is spooled to a logical
address, we mean that the message is written to a stable log; a copy is also sent to the service
associated with the address if it is running. A service that has failed will restart by initiating a
spool replay operation, causing messages in the spool to be delivered in the order spooled to the
service. When a message will no longer be needed, it can be removed from the spool. The spooling
service is typically configured to activate automatically when certain services are not operational;
the service empties and deactivates the spool after replay is completed.

During communication failures, messages that cannot be sent to a destination duster are spooled
in what we call an interLAN spool area. After communication is re-established, these messages are
retrieved from the spool and sent to their destinations. The interLAN spools are located within
the interconnection layer.

To deal with application-level asynchrony (i.e. an application that only runs periodically, or that
is temporarily unavailable because of component failures), we also associate a wide area application
spool (or wSpool with each wide area application. A wSpool consists of a set of spools, one in each
cluster where the application is represented. When a WAN message is deliverable to an application,
but the local representative is not available, the message is logged into the corresponding wSpool.
Once the local group recovers, it initiates spool replay and then shuts the spool down. The wSpool
management software is part of the application manager layer.

During periods when an application is operational on all clusters and there are no WAN par-
titions, all wSpools will be inactive, and the interLAN spools will be updated asynchronously. In
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4

this (normal) mode of operation, the overhead associated with the spooling mechanisms is small.

4.1.2 Set join primitive

To join a wSet, an application invokes the primitive set-join(setNamegpname,clist), where setName
is a symbolic name for the application; gpname is the local group name of the joining group: and
¢list is the list of clusters where components of this application reside.

The call creates and initializes WAN data structures associated with the wSet abstraction, if
this has not already been done. Initialization includes creating the wSpool for the application, and
triggers an exchange of messages between the caller's cluster and other clusters listed in the clist
argument. The clist associated with a wSet is assumed static.

The call also registers the group named gpname as the local representative of the application
named setName on the caller's cluster. This registration will trigger delivery of any pending fault-
tolerant multicasts if the wSet was already active.

4.1.3 Conversations

A wSet identifies the full set of related groups making up a wide area application. However, as
illustrated in the case studies, within a single application, there may be a need for communication
between individual pairs of groups (point-to-point), for multicast to the full set of related groups
(global multicast) or between subsets of the full set (restricted multicast). To permit all these kinds
of addressing, our wide area system provides support for what we call WAN conversations. The
mechanism is based on the notion of conversations used in the PSYNC system [8J.

A WAN conversation is defined by its participants (a subset of the wSet) and a set of mes-
sages exchanged between these participants. A programmer creates a conversation and obtains a
conversation identifier for it using the call:

ConviD = getConvlD(setName, participants)

where set Name is the wSet name, participants is the list of clusters participating to this conversation.

The ConvID obtained in this manner is used as an argument to the WAN communication primitives
shown below.

4.2 Long haul multicast protocols

This sections describes the two WAN multicast primitives supported by our system.

4.2.1 The Per Conversation Causal BroadCAST (pc-cbcast) protocol

Recall that -< represents the happens before relationship for the system. The pc.cbcast protocol
guarantees that, for any pair of messages m and m' belonging to the same conversation, if m - m',
m will be delivered to each participant in the conversation before W. During periods when a
,,articipant in a conversation is unreachable due to partition, pc-cbcast logs messages atomically
in the interLAN spools associated with the channels connecting its sender's with its destination
dusters. Similarly, on receiving a message at a remote duster, if the destination process group is
not operational, it is spooled for delayed delivery. We assume both types of spools are replicated
for fault-tolerance and that the physical loss of all replicas of an interLAN spool is unlikely. Our
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software will tole, ate failures and recovery of spooling processes but can lose messages if the spool
files themselves are corrupted during a crash.

The details of the pc.cbcast implementation appear below. The protocol uses a timestamping
scheme similar to the one used in the Isis fast causal multicast protocol [4]. Under this approach.
each message m carries a list of message-id's for messages m' where m' -< m. If, when m arrives.
such a message m' is still outstanding, m is delayed until m' has been received. Because our scheme
assumes that all forms of LAN failure are transient and that interLAN spools are recovered after
failure, m' will eventually he received and m' can then be delivered.

4.2.2 The Per Conversation Atomic BroadCAST (pc-abcast) protocol

The pc-abcast protocol provides that all multicast messages belonging to the same conversation
will be delivered in the same order at common destinators. Our protocol implements pc-abcast
using pc-cbcast:

For each conversation, we choose one of the participants to be the coordinator for pc-abcast
messages belonging to this conversation. Our current scheme uses the participant with the
smallest cluster identifier.

Participants other than the coordinator issue pc-abcast operations through the intermediary of the
coordinator. This is done using a pc-cbcast message belonging to the conversation consisting
only of the requester and the coordinator.

The coordinator now uses pc.cbcast to send the message to the specified set of participants on
behalf of the real sender. Because all of these multicasts originate in a common sender, and
pc-cbcast is FIFO, the delivery ordering will be the same at all destinations.

Our protocol does not change coordinator, even during failures. This decision simplifies the im-
plementation, and since LAN subsystems are assumed to isolate the effect of failures, we see little
benefit in changing coordinators. In fact, Skeen's work on partitioning suggests that this type of
protocol must sometimes block during partitions, even if it has the freedom to change coordinators.

5 The ISIS wide area system

The Isis long haul package is implemented upon the TCP protocol. In this section we focus on the
implementation of the interconnection layer and the pc.cbcast in the Isis environment. We will also
discuss the interaction between this extension and the original Isis toolkit. Section 5.1 discusses
the implementation of the interconnection layer. Section 5.2 discusses the implementation of the
pc-cbcast protocol. Finally, section 5.3 discusses the interaction between the Isis toolkit and this
new facility.

5.1 Interconnection of ISIS clusters

The Isis wide area system is composed of a set of interconnected Isis dusters. Each Isis cluster
has a unique identifier and name by which it is known to other dusters. The initial configuration
of the wide area system is provided in a clusters file that lists, for each duster, a set of its access
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potnts. Each a(,,ess point is an internet system name or address and TCP port number on which
long-haul connection requests from other clusters will be accepted.

Long-haul! communication is done by a special WAN service consisting of a process group ill
each cluster. Between each pair of clusters, this service maintains a single master connection at all
times. The connection is established between a single. randomly selected member of the cluster on
one side and a randomly selected member of the cluster on the other side. The effect of this is to
spread the responsibility for handling master connections around the group: if there are 3 group
members in a system with 6 clusters, each member will normally handle 2 master connections.
Should the process responsible for a particular master connection fail, one of the surviving group
members opens a backup connection.

Recall from Sec. 2.1.3 that the interconnection layer must deal with both planned and unplanned
communication outages. A control-function interface permits applications to enable and disable
communication with one or more clusters. This mechanism is invoked when a controlled partition
begins and subsequently re-invoked at the end of each period of partitioned activity. We assume
that normal Isis tools can be used to implement such functionality as part of the application layer.

The interconnection layer must also recover from unplanned long haul connection failures, re-
transmitting messages that were lost due to the failure while also detecting and ignoring duplicate
messages that may have arrived over different links. This requires that all members of the long-haul
group be kept closely synchronized with the process handling the master connection.

To solve this, we atomically multicast all long-haul requests to the full membership of the long-
haul process group. All members update their local states on receiving such a message. Events that
should trigger an external action, such as transmitting a message to a remote cluster or forwarding
a message to a local process group, are performed only by the process managing the corresponding
master connection.

Note that all members of the long-haul group observe all events in the same order. The im-
plication of this is that no intra-member communication is needed to keep the group members
synchronized.

On the destination cluster, the member that receives the message multicasts it to all other
members of the communication group. Hence, each member learns of the reception of any mes-
sage within its duster. The cluster also acknowledges the messages it receives, piggybacking this
information on any normal messages sent in the reverse direction.

If a master connection fails, the process that will replace it re-opens the connection, retransmits
any unacknowledged messages and then resumes normal service. In the receiving side, the group
detects any duplicated message and discards it.

5.2 The pc.cbcast implementation

Our pc.cbcast implementation is similar to the one used to implement the Isis cbcast protocol, but
re-engineered in light of the special characteristics of the WAN environment.

5.2.1 The main structures

An Isis application issues a pc-cbcast as follows. First, if the message has a local destination, a
copy of this message is multicast to the local group representing the destination wSet using the
normal Isis cbcast protocol, and spooled if that group is not currently active. Next, if the message
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has remote destinations, it is multicast to the the long-haul communication group. Before doinlg
this, the sender allocates a descriptor for the multicast. containing the following information:

e A unique message identifier (messID).

* The identifier for the sending cluster (senderiD).

s The identifier for the destination cluster(s) (destlD).'

* An n-bit vector specifying destination clusters that have not yet received copies of this message
(DestClusters).

Additionally, each message carries a list of descriptors for predecessors' which have not yet been sent,
or have changed since the last time they were sent, to the current destination. These descriptors
are sorted so that if in1 , ... , Mk are the messages described in the list, for every i E 1... k -
1 mi -" mi+ I.

Tlkr arp!lcation manager layer of the long-haul service maintains three types of descriptor
queues and three types of messages queues for each application (wSet).

1. The DESCBUF queue contains pc-cbcast descriptors sent or received by this participant.

2. For each cluster, a queue of waiting descriptors (PRECEDES). The descriptors in these queues
will be sent with the next message destined to the associated partner. PRECEDES consists
of pointers to the items in the DESCBUF.

3. For each cluster, a queue of descriptors that have been seen previously from that cluster
(KNOWN). These queues also point to items in the DESCBUF.

4. A global queue of undeliverable messages (GDELAYED). These are messages for which delivery
has been delayed while waiting for some predecessor that has not yet arrived.

5. For each participant, a queue of waiting messages (PDELAYED). This list contains pointers
to items in the GDELAYED.

6. A queue of deliverable messages (DELIVERABLE). Once a message is deliverable, it is put in
this queue and then later delivered to the application.

5.2.2 The sending and receiving procedures

The sending procedure for a message is as follows. First, a descriptor is allocated. The DestClusters
field of the descriptor is set from the participants list in the conversation used. Then, the new
descriptor is added to the DESCBUF and to all PRECEDES queues other than the one associated
with the sender duster. Finally, all the descriptors present in the PRECEDES list associated with
the destination are piggybacked on the message. Once a message has been sent to a particular desti-
nation, these descriptors can be removed from the corresponding PRECEDES list, taking advantage
of the failure-free communication channel assumption.

'This identifier names a specific cluster in case of point-to-point communication. In case of a multicast, this field
will have a distinguished value, and the destinations will be specified in the DestClusters field.
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When an application manager receives a message, it first analyzes the list of piggybacked de-
scriptors. as foilows. For each descriptor d (starting with the first one), this procedulre verifies that
the descriptor is valid, i.e. that there is no descriptor d' such that d' -< d, d and d' have the same
sender, and d' is known but d is not. This test is carried out by search of the sender KNOWN quele.

If the descriptor is valid, the receiving procedure looks it up in the DESCBUF. If found, the stored
DestClusters information is masked by and-ing it with information in the incoming descriptor. If
the descriptor is not found in the DESCBUF, a new item is added to DESCBUF and to the KNOWN

list * associated with the original sender of the message to which the descriptor corresponds. A new
arrival descriptor is then added to the PRECEDES queue for the destination.

A pc-cbcast message is deliverable if all its predecessors have already been delivered. If the
arrival message is not deliverable, it is appended to the GDELAYED and PDELAYED queue for
senders of its missing predeces:ors. If the message is deliverable, it is appended to the deliverable

queue (DELIVERABLE).

5.2.3 Garbage collection of messages and descriptors

When an application manager receives a valid descriptor for the first time, it dears the correspond-
ing bit in the DestClusters field if the desc:ibed message is destined to a participant located in this
cluster, and if the message itself arrived with this descriptor. After a destination has cleared its bit

within the DestClusters field of a descriptor, it resends this descriptor to all other partners. One
can easily establish that

1. If any participant sees the DestClusters vector associated with some message become zero,
then the corresponding message has been received by all its destinations.

2. For any participant, the DestClusters vector field of any descriptor becomes zero in finite
time, provided that there exists a minimum level of interaction between each pair of clusters.
This is because each time a process resets a bit within the DestClusters field, it resends the
descriptor to all other interested partners. Provided that at least one message is sent to any
destination after this update, all other partners will see the update.

3. A new arrival descriptor d' is stale and may be discarded if there exists a known descriptor d
such that d and d' have the same initial sender and the message described by d' "precedes"
the one described by d, and d' is not in the DESCBUF queue. This is true for two reasons.

First, each descriptor arrives at any destination with the descriptors of messages preceding
the one it describes, unless these descriptors have previously been sent to this destination.
Secondly, because dusters communicate through fifo channels, the descriptors are received in
the order sent. The only case in which if d' -< d but d' is not in the DESCBUF is when d' has
been garbage collected, in the manner described below.

The garbage collection procedure relies on these three properties. Once the DestClusters field
of a descriptor associated to some message is zero, the message body itself is garbage collected.

However, its descriptor is not garbage collected immediately. A descriptor is garbage collectible if
its DestClusters bit vector is zero, and if there is no more links pointing to it from any KNOWN or
PRECEDES list. Links from different PRECEDES lists are removed as soon as descriptors are sent
to their destinations, as described in the previous section. A link is removed from a KNOWN list
when the DestClusters bit vector of the descriptor it points to is zero, and if this link is the head
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of its list. By delaying the removal of links from KNOWN lists until they are at the head of thtir
list. we prevent the addition of invalid descriptors. Notice that the head of a KNOWN identifies
tle oldest valid message from the corresponding remote cluster.

5.3 Interaction with the Isis toolkit

The figure 3 summarizes the interface between the long haul package and the Isis toolkit. A client
process communicates with the long haul package through the following interface.

setjoin(char *setlame);
bitvec *ConvID = getConvID(char *setName, char **partipantList);
pc-cbcast(char *setlame, char *dent, int entry, message *msg, bitvec *ConvID);
pc-abcast(char *setlame, char *dest, int entry, message *msg, bitvec *ConvID);

The primitives set-join and getConvlD have already been described. Notice that in our imple-
mentation, the Isis set-join primitive only has one argument. Our initial implementation assumes
that each wide area application has components in all Isis clusters; it also assumes also that these
components have the same Isis group name everywhere.

The arguments to pc-cbcast and pc.abcast are as follows. setName is the name of the wide area
application, which is also the name of the local group representing this application on each cluster.
For a point-to-point communication, dest is the name of the destination cluster. If dest is the string
"all", this multicast is addressed to the participants in the conversation identified by the ConvID
argument. The entry argument specifies the entry point of the application (or more precisely of the

groups representing it) to which this message is to be delivered. Finally, msg is the message to be
delivered.

To transmit pc.cbcast and pc.abcast requests to the wide area communication service, the
Isis abcast protocol is used. This ensures that all members of the service receive these requests in
the same order, and hence can assign message identifiers and compute pc-cbcast descriptors without

first running a potentially complex protocol. Upon reception on the destination cluster, the wide
area package uses the corresponding Isis multicast protocol to deliver the message to the members
of the group named setName; (i.e. cbcast for pc.cbcast, and abcast for pc-abcast).

One can show that the end-to-end protocols (i.e. between the client processes and the set of all
members) are as defined for the per-conversation causal (resp. atomic) multicast protocol.

The long-haul tool also includes a file transfer interface. To use it, a message is tagged with the
name of a data file. As the tagged message is transferred over a communication link, the link-level
software appends to it the byte stream associated with the data file. On the reception side, the
process managing the master link copies this data either to a pre-specified, fixed destination, or to
a dynamically selected spooling area. Functions are provided for determining the file name that
was used. If desired, a callback is done on the sending side to signal successful completion of the
transfer.

6 Performance

Our performance analysis focuses on latency of the long-haul facilities in the case where no com-

munication failure occurs and the participating groups are all operational. We include RPC perfor-
mance figures, although we should also note that RPC is not entirely meaningful in the long-haul
environment because of frequent disruptions in the communication network. For example, when
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INIS was actually used between San Diego and Norway. it was difficult to maintain an open TCP
connection for more than 1 to 10 minutes at a time. Application software based on an RPC-rveI,
of communication would thus experience frequent timeouts and failures.

We separately evaluated the local delay to initiate a long-haul operation (the time before a

client message was logged in the interLAN spool), the delivery delay (the time to obtain a messa o
already logged on reception in an application spool), and the delay associated with transferrinlg
logged messages from one cluster to another. We found that the local delay and the delivery dlay
depend primarily on the Isis multicast delay than on the specific facilities described in this paper.
These figures are reported elsewhere [3,41, and have substantially improved in ISIS V2.1. For ISIS
V1.3.1, which we used in these tests, the abcast protocol cost approximately 20 to 25ms: for
ISIS V2.1, this figure has dropped to less than 12ms. Isis performance impacts primarily on the
WIDE-SYS figures shown below.

We undertook a more detailed analysis of the inter-cluster transfer rates, measuring the latency
imposed by both the long haul transport and the interconnection layers. We also measured the
transfer delay of the pc-cbcast protocol. Finally, we measured the intrinsic transfer delay and
latency of the pc-cbcast protocol when the logging mechanisms are bypassed; although such a
scheme would not be tolerant of communication failures.

All the figures reported here were measured during periods of low system load on a pair of Sun
Sparcstation l's under SUNOS 4.0.3c. The long haul package was run using Isis V1.3.1.

The two remote processes communicate through a TCP connection that was established before
we start the timing. In addition, the long haul message sent during the test was pre-allocated. We

run the measurements for user data field size equal to 0, 4, 64, 256, 512, 1024.
Within the long haul protocols layer, our tests used the pc-cbcast protocol.

6.1 Long haul transfer delay (Table 1)

In this test, the client procedure sends 99 messages, then waits for a message from the receiver
indicating that the the 99th message was received. This gives a good measure of the time needed
for to transfer 100 messages to the remote destination. The client repeated this transmission pattern
10 times for each measurement we made.

Table 1 summarizes the results of this experiment. Line TCP gives to the transfer delay seen
when two Isis applications communicate directly using a TCP connection. Line LHCH gives
to the transfer delay of the interconnection layer of our wide area package. Line PC.CBCAST
provides figures for the pc-cbcast protocol when we bypass the logging mechanisms. Line WIDE.-SYS
corresponds to the overall wide area system transfer delay, including the hop from the end-user to
the wide-area subsystem and the time for remote delivery to the destination program, including
all internal spooling and muticast costs. All figures are given in milliseconds, and the standard
deviation of each measure is given in parentheses.

6.2 Long haul latency (Table 2)

For this test, the receiver procedure replied to every message it receives, in an R.PC style, and the
client waited for each reply before sending the next message.

Table 2 synthesizes the results of our measurements. Line TCP gives the TCP latency we
measured between two Isis applications that communicated using a normal TCP connection. Line
LHCH gives to the latency of the interconnection layer of our wide area package. Line PC.CBCAST
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Sizes 0 4 G4 1256 5121 124

TCP 2.02(0.02) 2.06(0.02) 2.35 0.03) 2.42(0.02) z.i 2i0.02) 3.441 0.23
LHCH 9.38(0.49) 12.95(3.24) 9.98(0.29) 12.95(3.24) 10.41(0.36) 12.01 ).4t)

CBCAST 10.36(0.37) 13.42(1.38) 11.10(0.57) 10.85(0.26) 12.86(2.26) 14.23i 2.14
VWIDE-SYS 94.66(4.84) 103.72(19.75) 103.73(19.16) 128.38(18.47) 171.21(61.08) 131.43 19.S2

Table 1: Long haul transfer delays, source to destination (ms)

Sizes 0 4 64 256 512 1024

TCP 7.38(0.24) 8.31(0.37) 7.94(0.93) 13.15(2.65) 15.03(3.63) 11.37(067)
LHCH 23.29(1.53) 23.22(1.00) 23.97(0.99) 23.91(1.02) 47.79(3.99) 27.81(1.19)

CBCAST 26.69(1.40) 26.67(1.42) 26.36(0.86) 26.13(0.60) 28.17(1.24) 30.64(1.11)

Table 2: Long haul latency (milliseconds)

provides figures for the latency of the pc-cbcast protocol when we bypass the spooling mechanisms.

7 Conclusion

We have reported on a new wide-area communication facility for the Isis system. The system is
oriented towards an unusually loosely coupled, asynchronous style of programming, but in which
atomicity and ordering properties are nonetheless important determinants of application-level cor-
rectness. An implementation of the facility is included as part of the current Isis software release,
and is being used in at least one major Isis application, namely the IMS system described in the
paper.
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